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The dielectric response of the ferroelectric chiral smectic C phase in a bias 
electric field is studied theoretically within the Landau model using the constant 
amplitude approximation. It is argued that the response consists of two modes, 
one of which is related to the unwinding of the helix (the unwinding mode), 
whereas the other mode is associated with the distortion of the polarization 
distribution at constant pitch of the helix (the Goldstone mode). The relaxation 
frequency of the unwinding mode cf,), which is inversely proportional to the 
square of the sample dimension along the helical axis, is estimated to be of the 
order of 10-4Hz for a sample of length I x l m m  along the helical axis. 
Consequently, in dielectric experiments performed usually at frequencies higher 
thanf,, only the Goldstone mode contribution is detected. In this way, we can 
explain the behaviour of the measured static dielectric susceptibility which goes 
to zero as the critical field is approached from below, although the model predicts 
that the total static dielectric susceptibility, being a sum of the Goldstone mode 
and the unwinding mode contribution, diverges at the critical field. 

1. Introduction 
In the frequency range below 1 MHz, the dielectric response of ferroelectric 

chiral smectic C (SE) phases consists of two contributions [ 1, 21. The soft mode part 
of the response has an origin in the change of the tilt angle of the molecules, i.e. the 
change of the amplitude of the order parameter, when a homogeneous electric field is 
applied perpendicular to the helical axis. The Goldstone mode part, on the other 
hand, is related to the change in the direction of the tilt, i.e. to the change in the 
phase of the order parameter. As the change in the tilt of the molecules in tilted 
smectic phases is energetically expensive [3] except very close to the SA++Sz phase 
transition temperature T,, the soft mode dielectric response is small and can be 
resolved [ l ,  41 from the Goldstone mode only at temperatures very close to T,  
(Tc- T 5 1 K). At lower temperatures, the contribution to the dielectric response 
from the soft mode is negligibly small and only the Goldstone mode contribution is 
observed in dielectric measurements. 

The Goldstone mode contribution is observed also in dielectric measurements in 
a bias electric field. Excluding a temperature interval - 1 K below T,, this contribu- 
tion is the dominant one and this is the case we study in this paper. Studies of 
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104 B. ZekS et al. 

dielectric properties in a bias field are rare in the literature and only a few reports 
[5-8] of this type of experiment exist. The general feature of these experiments, 
performed at low but finite frequencies, is that the Goldstone mode dielectric 
strength seems to decrease as the bias electric field is increased, going towards zero 
as the critical unwinding field is approached. 

In a recent paper [9] we have presented a theoretical study of the phason 
contribution to the static dielectric susceptibility in a bias electric field. In this 
calculation we have shown that the phason mode dielectric strength is expected to 
increase with the bias electric field, diverging as the field approaches the critical 
unwinding field. This is in apparent contradiction to the experimental results [5-81. 
Here we show that the experimental and theoretical results are consistent if we 
interpret both results in a proper way. 

The outline of this paper is as follows. In $2, we introduce two modes that 
contribute to the phason part of the dielectric response of the system, i.e. the 
Goldstone and the unwinding mode. The relaxation frequency of the unwinding 
mode at zero field is estimated in $2.1 and compared to the Goldstone mode 
frequency. The corresponding dielectric strengths are evaluated as functions of a 
bias electric field in sub-section 2.2. In conclusion, a brief summary of the results is 
brought forward and the explanation of experimental dielectric results is given on 
the basis of the model. 

2. The Goldstone mode and the unwinding mode 
In an unperturbed S z  liquid crystal, the molecules are tilted and they precess 

helicoidally as we go from one smectic layer to another. The spontaneous polariza- 
tion P=(P,, P,) ,  which lies in a smectic plane and is perpendicular to the director, 
thus precesses in a similar way. Choosing the z axis as the layer normal, we describe 
the unperturbed system as 

P ,  = -Po sin @(z),  P, = Po cos @(z), (1) 

where @(z) = qoz and qo = 27c/p0 is the wave vector which corresponds to the pitch p o  
of the unperturbed helix, and Po is the spontaneous polarization. The average 
spontaneous polarization is determined by the average of cos @(z) and of sin @(z) 
and is equal to zero. By applying an electric field in the y direction, the induced 
polarization appears in this direction, which is calculated by averaging of cos @(z). 
The electric field distorts the pure helicoidal structure, so that the phase @(z) is a 
more complicated function, describing the tendency of the polarization to align 
along the field. 

In our further discussion, we refer to the previous paper [9], where we have 
studied the influence of the bias field on the pitch of the helix and on the induced 
polarization and where we have evaluated the static susceptibility as a function of a 
bias field. Let us consider the response of the helical system, if we increase the bias 
field by a small amount. The additional field tends to orient the spontaneous 
polarization in the field direction and the response of the system can be separated 
into two processes. The first one corresponds to the polarization reorientation 
at constant pitch of the helix, whereas the other one is associated with changes in the 
the helix. The wave vector of the former response is large (equal to the wave vector 
of the helix) and the corresponding process is expected to be rather fast. The rate of 
the latter process, which is related to pitch changes, is associated with the length of 
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Dielectric response of FLC phases 105 

the sample along the helical axis. The corresponding wave vector is therefore small 
and the process is expected to be slow compared to the former. 

We have therefore introduced two modes which contribute to the dynamic 
response of the helicoidal system in a bias electric field. The question arises, what is 
the contribution of both modes to the dielectric response of the sample? Dielectric 
experiments are performed at low but finite frequencies, usually not lower than 
about 10Hz. In $2.1, the pitch relaxation rate is estimated and it is shown that the 
relaxation frequency is much lower than 10 Hz. As a consequence, the frequencies 
used in a dielectric experiment are too high to change the pitch. Hence only the fast 
mode can be observed in dielectric measurements and it is usually named the 
Goldstone mode, in analogy to the zero field case. By the name unwinding mode, we 
will denote the slow mode associated with pitch changes. This mode is usually not 
observed dielectrically, but is expected to contribute to the dielectric relaxation 
because of the linear response of the pitch to a small perturbing field in the presence 
of the bias field. 

2.1. Estimation of the relaxation time of the unwinding mode 
In this sub-section, the relaxation rate f u  of the unwinding mode is estimated at 

zero bias field. We assume that we have a sample of length I along the helical axis 
and that the molecular director is free to rotate at both boundaries, at z=O and at 
z = 1 .  We are interested in such a fluctuation of the phase which changes the pitch of 
the helix and costs the least energy. The amplitude of this fluctuation is maximal at 
both boundaries, and is equal to zero in the middle of the sample. Its wavelength is 
therefore A = 21. The corresponding dynamical process is associated with the 
wavevector q = qo t- z / l ,  (see figure l) ,  whereas the Goldstone mode deformation is 
related to the wave vector q=O. As the phason dispersion is parabolic with the 
minimum at the critical wave vector q,,, at which the phason relaxation frequency is 

9 
9 0  + 9 rnin 

/ 
9 0 -  9 rnin 

Figure 1. Estimation of the relaxation rate of the unwinding mode at zero bias field. 
Relaxation frequency cf )  of phase fluctuations as a function of the wave vector q. The 
wave vector q, which corresponds to the unwinding process, is q=qO+qminr where 
qmin = nil (A = 21 is the wavelength of the director distortion). The ratiof,/f, is equal to 
(qmin/q0)', leading to equation (2). 
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106 B. ZekS et al. 

zero due to the presence of a continuous helical symmetry in the system, the 
unwinding mode frequency cf,) and the Goldstone mode frequency (fc) can be 
compared 

The phason relaxation frequency is shown in figure 1 as a function of the wavevector 
q.  The relaxation frequency of the unwinding mode is schematically presented as 
well. A typical value of the helical period p o  is about 1 pm. If the size of the sample is 
I= 1 mm and the Goldstone mode frequency f G  M lo3 Hz, the relaxation frequency of 
the unwinding process isf,,M 10-4Hz, which is a very small value compared to the 
Goldstone mode frequency. Even at samples with length 1% 10pm along the helical 
axis, we see that the relaxation frequency of the unwinding mode increases only to 
f,, - 1 Hz. Thus the relaxation frequency of the unwinding mode is expected to be 
below the lowest frequencies used in a dielectric experiment, and for this reason, the 
unwinding mode cannot be observed in most experiments. The observability of this 
mode is also expected to be difficult due to the presence of ionic impurities which 
give a dominant contribution to the low frequency dielectric response. These two 
contributions might be resolved, because of their different frequency dependences, in 
thin samples where the unwinding mode frequency is large enough. 

2.2.  Dielectric strengths of the Goldstone and the unwinding mode 
In this sub-section we derive the Goldstone and the unwinding mode dielectric 

strengths, i.e. their static contributions to the dielectric susceptibility, as functions of 
a bias electric field. Let us introduce dimensionless quantities in the following way. 
The dimensionless polarization 7j and the reduced field E are defined according to 

so that the dimensionless induced polarization P is expressed in units of the 
spontaneous polarization Po and the field E in units of the critical unwinding field E, ,  
given by [9] 

where 0, is the magnitude of the tilt. The static dielectric susceptibility x of the 
system is related to a dimensionless susceptibility 2 by the relation 

so that 

~ d p  d(cos@) 
a! = -= dc de ’ 

In a previous paper [9] we have calculated the polar ordering (cos@) as a function 
of the reduced field E E ( O ,  1). The result of this calculation is shown in figure 2. The 
corresponding susceptibility x is presented in figure 3 as a function of the bias field E .  
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Figure 2. The polar ordering (cos a) as a function of the reduced bias electric field 8. 

0 ‘  I I I I I 

0 0.2 0.4 0.6 0.8 1 E 
Figure?. The sum of the Goldstone mode and the unwiniing mode dielectric strengths, 

x=d(cos a)/& (normalized to the dielectric constant z 0 = n 2 / 3 2 )  as a function of the 
bias electric field E .  

Since this is the total static response, the susceptibility includes both modes, the 
Goldstone mode and the unwinding mode 

x” = x”c + f” .  (7) 

The total susceptibility 2 diverges at the critical field, where ~ + l ,  as shown in figure 
3. From the definition of the Goldstone mode contribution we deduce the corres- 
ponding susceptibility f G  

where p denotes the pitch of the helix as a function of the bias field 6 .  This definition 
has to be understood in the following way. At a given bias field, E ,  the field is 
increased by a small amount de. To obtain the Goldstone mode contribution zG of 
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108 B. ZekS et al. 

the susceptibility, the additional field dc is not allowed to change the pitch. In this 
way the unwinding mode contribution f u  is defined as a difference between the total 
susceptibility f and the Goldstone mode susceptibility xc. 

In order to derive dielectric strengths f ,  f c  and 2". we start with the balance of 
torque equation [lo, 1 11 

Introducing the reduced electric field E ,  defined by equations (3) and (4), and also 
introducing a dimensionless length scale u =z/z*,  where z* = J (K ,OZ/E ,Po) ,  the 
equation we have to solve is a sine-Gordon equation 

E sin ( D = O .  
d% 
du2 

- 

For a given value of the reduced field, E ,  we can use this equation to calculate [9] the 
pitch p over the pitch p o  at zero field and the average induced polarization (cos (D) 

in dimensionless units, respectively, 

In these equations K(h) and E(h) are complete elliptic integrals [12] of the first and 
the second kind, respectively, and the parameter h is related to the reduced electric 
field E through the transcendent equation 

h = JcE(h).  (1 3) 

The total static response given by equation (6)  can be expressed as 

Using the properties [ 121 of complete elliptic integrals we calculate the derivative 

(15) 

Distinguishing between the total dielectric strength in equation (6) and the Gold- 
stone mode dielectric strength in equation (8) which has to be calculated at a 
constant pitch, determined by a bias field, we derive the expressions for the 
quantities dh/dE and dh/d&( p =  const, respectively. The first quantity, dhldc, which 
allows the small measuring field to change the pitch is calculated as the total 
derivative of equation (13), whereas the second quantity, dh/dEl p =  which refers 
to the change in the parameter h at constant pitch, is obtained from the total 
derivative of equation (1 l), 
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0.6 

0.4 

0.2 

0 -  

dh 1 E(h)3 
de -2h K(h) ' 
__-__ 

- 

- 

- 

I I I I 

By substituting equations (15) and (16) into equation (14) we derive the final result 

The total dielectric strength f depicted in figure 3 diverges at the critical field (&+I,  
h - +  1 ), whereas the Goldstone mode dielectric strength f G  decreases with a bias field 
and goes to zero at the critical field as shown in figure 4. The dielectric strength f u  of 
the unwinding mode, presented in figure 5 ,  is by definition (7) a difference between 
the total strength and Goldstone mode strength. It is zero in the absence of a bias 
field, increases with the field monotonously and diverges at the critical field. 

3. Conclusion 
In the present paper we show that the phason part of the dielectric response of 

the SE phase in a bias electric field consists of two modes. One of these, the 
unwinding mode, is related to the unwinding of the helix, characterized by the wave 
vector q=qo+z/I, 1 being the length of the sample along the helical axis. The 
corresponding relaxation frequency fu is inversely proportional to the square of the 

Figure 4. The Goldstone mode dielectric strength i,=d(cos @ ) / ~ E I ~ , ~ ~ ~ ~ ~  as a function of 
t_he bias electric field E ,  normalized to the dielectric constant xo at zero bias field, 
xo = n2/32. 
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110 B. Zekg et al. 

0 
0 0.2 0.4 0.6 0.8 1 

Figure 5. The unwinding mode dielectric strength iu_=i-ic as a functiofl of the bias 
electric field E ,  normalized to the dielectric constant xo at zero bias field, xo=n2/32 .  

sample length along the helical axis. The unwinding mode frequency is estimated to 
be less than 1 Hz (c.f. equation (2)). The other mode, the Goldstone mode, is 
associated with the deformation of the polarization profile at constant pitch, i.e. the 
corresponding wave vector is equal to the wave vector of the helical pitch. The 
Goldstone mode frequency [ I ,  4-6, 131 is of the order of a few hundred Hz. 

In dielectric experiments, the measuring field is used with a frequency which is 
higher than the unwinding mode frequency fu .  As a consequence, only the 
Goldstone mode is detected in these experiments. We show that the dielectric 
strength of the Goldstone mode decreases with a bias field and goes to zero at the 
critical field (see figure 4). This behaviour is in a qualitative agreement with what is 
observed in experiments [5-81. 

The unwinding mode dielectric strength xu being zero in the absence of a bias 
field increases with the field and diverges at the critical field (see figure 5).  However, 
as already discussed, the slow unwinding mode does not contribute to the measured 
dielectric susceptibility unless very low frequencies are used in the experiment. This 
mode could be observed, if the helix is confined to a small domain (for example, [14]) 
and the relaxation frequency is shifted into an experimentally accessible range. 

It should also be pointed out that recent observations [15] of more than two 
modes (the soft) and the Goldstone mode) in ferroelectric liquid crystals can be 
explained on the basis of general symmetry arguments. External fields or restricted 
geometries break the continuous helicoidal symmetry of the bulk SE phase, so that 
additional modes are expected, which recover the broken symmetry. 

Ozaki and Yoshino [ 161, who have studied the dynamic response of second 
harmonic generation in a ferroelectric liquid crystalline system to an applied, 
stepwise electric field, have detected two response times, one of the order of about a 
second and the other one of the order of about a millisecond. Recently also, a 
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Dielectric response of FLC phases 111 

calculation by Hornreich and Shtrikman [17] shows that the dynamic response of the 
helicoidal cholesteric phase consists of two relaxations with well-separated relaxa- 
tion times tfast/tslow z There exists therefore both experimental and theoretical 
evidence in the literature to support the model, presented in this paper. 

This work was supported by the National Science Foundation through the 
United States-Yugoslav Joint Fund for Scientific Cooperation under Grant No. 
NSF J F  845. Support from the Ministry of Science and Technology of the Republic 
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